Optimal divisions of a convex body

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Good are Optimal Cake Divisions?

We consider the problem of selecting fair divisions of a heterogeneous divisible good among a set of agents. Recent work (Cohler et al., AAAI 2011) focused on designing algorithms for computing optimal—social welfare maximizing (maxsum)—allocations under the fairness notion of envyfreeness. Maxsum allocations can also be found under alternative notions such as equitability. In this paper, we as...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

Inequalities for the Difference Body of a Convex Body

In the following, 5 will denote the boundary of the unit ball in En, and u a variable point of S (so re is a unit vector, or "direction"). The polar equation of the boundary of DK is given by p = /»(«), uES, so piu) is the radius of DK in the direction u. Then p(w) is the maximum length of a chord of K having direction u—the length of a "diameter" of K having direction u. Let p. denote w-dimens...

متن کامل

Euclidean projections of a p-convex body

In this paper we study Euclidean projections of a p-convex body in IR. Precisely, we prove that for any integer k satisfying lnn ≤ k ≤ n/2, there exists a projection of rank k with the distance to the Euclidean ball not exceeding Cp(k/ln(1 + nk )) 1/p−1/2, where Cp is an absolute positive constant depending only on p. Moreover, we obtain precise estimates of entropy numbers of identity operator...

متن کامل

Measure of Planes Intersecting a Convex Body

Recall that an element de of the standard measure is written as de = dp · dξ, where (p, ξ) is the usual parametrization of a plane e: p is the distance of e from the origin O; ξ ∈ S is the direction normal to e, dξ is an element of solid angle of the unit sphere S. Where appropriate we write h(e) = h(p, ξ). The concept of a flag in R which naturally emerges in Combinatorial integral geometry wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2023

ISSN: ['1331-4343', '1848-9966']

DOI: https://doi.org/10.7153/mia-2023-26-21